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Chaotic dynamics from interspike intervals
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Considering two different mathematical models describing chaotic spiking phenomena, namely, an
integrate-and-fireand athreshold-crossingnodel, we discuss the problem of extracting dynamics from inter-
spike intervalgISls) and show that the possibilities of computing the largest Lyapunov expdbEntfrom
point processes differ between the two models. We also consider the problem of estimating the second LE and
the possibility to diagnose hyperchaotic behavior by processing spike trains. Since the second exponent is quite
sensitive to the structure of the ISI series, we investigate the problem of its computation.
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I. INTRODUCTION of dynamical system theory, this condition sets the equation
of a secant plane in phase space. Therefore, the interspike
An important problem in modern science is the study ofintervalsl;=T, . ;—T; (TC ISls) can be interpreted as return
information processing by biological systems. Optical,times to a Poincarsecant.
chemical, and acoustic signals, in fact all types of informa-  Within the framework of IF models a sequence of inter-

tion which is received by the sensory system, are encoded bypike intervald; (IF ISls) can be obtained from the equation
nerve cells into sequences of pulses of similar sHapikes

before they are transmitted to the brain. Although the mo-
lecular mechanisms of this encoding are partly understood, a
significant number of questions remain relating to the func- Tita
tion of the pulses as a cod]. fT_ S(tydt=0, ;=T —Ti. @

A nerve cell can be considered as an example of a thresh- '
old device that transforms an input sigig§t) into an output
sequence of spikes. The shape of the output pulses does not
depend on the external signal, and the information about thelere, 6 is a threshold level and; are the times when the
structure ofS(t) is reflected in the time intervals between firing threshold is reached and spikes occur. After such
successive firingénterspike intervals of the action potential events the value of the integral is reset to zero.
train or ISI9. Such processes are often referred to as point In our previous work$9,10], the possibility of extracting
processes. They have been the topic of a large number efynamics from return times was tested numerically. It was
studies in the physical literaturg2]. Recently, point pro-  shown that the largest Lyapunov exponér) \ ; that char-
cesses have become of interest from the viewpoint of recorgcterizes the chaotic dynamics of the signal can be extracted
struction of dynamical systemi8—7]. When applying the from TC ISIs if the mean value of the return time does not
reconstruction to a threshold device subject to an externaglyceed some temporal scale. In the present study we show
force S(t) the question arises: Can the state of the forcingpat the possibilities of extracting dynamics from interspike
system be identified from the output ISI sequence? An anjenals differ between the above-mentioned models. We
swer was first provided by Saugg,4], who proved that Tak- also discuss the problem of computing the second Lyapunov

ens embedding theoref8] can be extended to the case Of. xponent from ISIs and, hence, the possibility of diagnosing
point processes. As a consequence, the ISI may be consﬁ-

ered as a new state variable that allows us to study the IOW_yperchaotlc signals by processing spike trains.
dimensional dynamics at the input of a neuron. The possibil-

ity to characterize numerically the properties of the external

signal when only processing spike train has been tested in all- COMPUTING THE LARGEST LE FROM ISI SERIES
number of workgd5-7].

Rather popular and at the same time biologically moti- Let us first discuss the TC model. A useful approach to
vated approaches to the analysis of spiking phenomena areconstruct the metrical and dynamical properties of a low-
threshold-crossindTC) and integrate-and-fire(IF) models.  dimensional signa®(t) from return times has been proposed
Both approaches consider often a chaotic input sig#), by Jansoret al.[9]. It is based on the notion of an instanta-
e.g., a variable of some dynamical system in the case of T@Geous frequency for chaotic oscillations. Briefly speaking,
models or its linear transformation for IF modéf. we have suggested to analyze the temporal dependence of

Within the framework of the first approach, the timgs the average instantaneous frequency that maintains the char-
are determined as the moments when the si§(igl crosses acteristics of the chaotic attractor and can be obtained to
the levelS=0 in a particular direction. From the viewpoint some approximation from TC IS[®].
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Let us consider the Rsler system follows: Under what conditions is it possible to extract nu-
merically the characteristics of the chaotic oscillati@{s)
d_X: —(y+2) at the input of the threshold device from the output signal
dt y ' (i.e., from the TC ISl-sequeng2In a previous study10] we

have shown that the largest LE can be computed from return

QZXJFO 15/ times if the mean valué of the TC ISl is less than some
dt R temporal scal§ . (Fig. 2) that can be taken approximately to
be equal to the prediction tim@r Lyapunov time for the
chaotic oscillation$12].

Moreover, even if some loops of the phase-space trajec-
tory do not cross the plarfe= 0, the value of the largest LE
Here, S(t) =x(t), and the secant plane is specifiedxas0.  can be obtained almost with the same accuracy as in the case
A projection of the chaotic attractor on the plangy() re-
sembles a smeared limit cydi&1]. Using the Poincarsec- 0.12
tion, to each rotatioti.e., to each TC ISlwe can attribute a
phase increase of®2[11]:

t—T, ) 7‘1
<p(t)=27rl—_+2'n'|, T,<t<Ti,q. (3)
I

dz_

T =0.2+z(x—10). (2

We may hereafter introduce the poindgT;)=2/l; that
represent the values of the average instantaneous frequency 0-000
during a return timd; . ’

From the viewpoint of reconstruction it is preferable to
analyze data with constant time interv. For this purpose
the pointsw(T;) can be interpolated by a smooth function
(e.g., by a cubic splinew;,(t). Jansoret al.[9] showed that
wint(t) in many cases allows us to estimate the properties of
chaotic oscillation(t) with good accuracy.

If the value of the threshold levé differs from zero, the
situation becomes more complicated. An increase®of
changes the structures of the TC ISI series and return time 00,5 o 172
map, because certain loops cease to intersect the secant plane ' '

(Fig. 1. Shifting of the firing threshold has a familiar inter- FIG. 2. (a) Dependence of the largest LR ) estimated from
pretation: Suppose that we change the amplitude or the medi€ ISls using the method13]; (b) corresponding values of the
value of the input signa®(t) at constan® >0. In the frame-  mean ISIl vs the firing threshol® . The first coordinate of Eq$2)
work of dynamical systems theory the properties of the forc-has been used as the input sigiét)=x(t). The largest LE re-
ing system(e.g., the dimension and DEre invariant to lin-  mains nearly independent 6f as long ad falls below a certain
ear transformations of the coordinates. The question is agreshold.
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FIG. 4. Results of computing two LEs from TC ISI series ob-
tained with® =0 vs one of the parameters from the algoritfi8].
D, is the initial separation between phase trajectories in the restored
attractor. First, a renormalization of the reconstructed phase portrait
to the rangd0,1] has been performed.

C=30. This corresponds tb<Ty/4, whereT, is the basic
0.0 C 100.0 period of the chaotic oscillationgt). For smallC the length
of time window spanned by a reconstructed state vector, be-

FIG. 3. Dependence of the largest LE estimated from IF ISIscomes quite large that leads to the effect of attractor degrad-
using the methofl13] (a) and corresponding values of the mean ISI ing [5].
vs the shiftC of the chaotic signalb). The value of threshold level We conclude that the largest LE of the driving signal can
0=35. be extracted from the output sequence of interspike intervals
for TC as well as for IF models if the mean value of the ISI
does not exceed some temporal schle This scale takes

of small thresholdg§where crossing of the secant plane oc—d_ff I ‘ h ¢ h ical model d
curs during each rotationAlthough the metrical properties derent values for each type of mathematical model used to

are rather sensitive to the choice ®fand often cannot be describe the spiking phenomerig: is less thanfo/4 for IF

estimated’5], we can still extract dynamics from the inter- models(for signals with clearly expressed basic pejiadd

spike intervals. does not exceed the Lyapunov time for TC models. The
Now consider the IF model. Following Racicot and Long- larger value of the characteristic scale for return times in the

tin [6], at high firing rates an ISI represents a nonlinear translatter case is presumably connected with slower temporal
formation of the external signal variations for the average instantaneous frequengyt) in

comparison with the oscillations &,,(t).

li~6/S(T)). 4
Therefore, we can write Ill. COMPUTING TWO LE FROM RETURN TIMES
11 Let us now consider a more complicated problem,
1.~ ST =K. ®  hamely, th i 4 o
i y, the extraction of the second L&,J from point

processes. Choose again the first coordinate of theslRo
Equation(5) implies that at fixed momenf; we know the  system(2) as the input signai(t) for the TC-model. Figure
linear transformation of the input signal. The point$;{T;) 4 shows the results for two LE computed with=0 when
are again interpolated by a smooth funct®p,(t) that can  the TC ISI sequence has only one characteristic temporal
then be used in the reconstruction. Sirgg(t)~kS(t) we  scale. The quality of extracting dynamics can be considered
expect that the interpolated temporal dependence maintaing, fairly good 4, is close to zerp
both the metrical and the dynamical properties of the attrac- Tis situation is changed dramatically if there exist sev-
tor corresponding to the chaotic forcing. We have carried ouf ) scales in the return timébigs. 1c,d)]. In this case, the
SUCh. a calc.ulatlon ta_kmg input signd(t) =x(t) + C, whe.re second LE takes nonzero values, and the corresponding re-
X(t) is the flrs_t coordinate of the Reler systenﬁz_) andCis gime of the external driv&(t) can be wrongly diagnosed as
a constant Sh'ft¢:40’9:35.) [(_3]‘ The_longe_ra s, the less hyperchaotic. The reason is that unlike the case of small
is the accuracy of Eq(4). Aiming to investigate how the . oqh4i4s, an attractor restored from TC ISis for la@yés
quality of the reconstructio_n of the attractor’s c:harac:teristicsnighly inho’mogeneouELO].
depends on the mean vallieof the IF ISIs, we can change A possible way of solving the problem of inhomogeneity
the constan€ at fixed ¢ instead of Shifting the flrlng thresh- for chaotic processes with a C|ear|y expressed basic fre-
old as for TC model. An increase @f leads an increase of quency consists in the generalization of the procedure for
the firing rate and a decrease lofFig. 3. It is clearly seen instantaneous phase definition. To each crossing of the se-
that the value oh; does not change significantly as long ascant plane, we can attribute arR; phase increase:
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FIG. 5. Results of computing the second LE from TC ISI series dx
appropriate to® =11 vs the initial distance between phase trajec- 2 woYo— Zo+ C(X1— Xy),
tories. Solid and dashed lines correspond to different procedures for dt
the introduction of the instantaneous phase: via(Bpgand via Eq.
(6), respectively. In both cases, the error in the estimation,0f dy, _
quite large. ar WXt ays,
: dz,
t—T, FTERLARZ SR O
go*(t)=277ki|—+2772 ki, Ti<t<Ti.;, (6§
[ =1

where the parameters, 8, and u govern the dynamics of

wherek; are no longer constant, but can be obtained from theach subsystent is the coupling parametety; = wy+ A,
condition of slow changes of the average instantaneous frexnd w,= wy,— A are the basic frequencies andis the mis-
quencyo™ (T;)=2mk;/l; for successive TC ISIs. The points match between them. The parameters are chosen as follows
*(T;) are interpolated by a smooth functiesf;(t) used [14]: @=0.15, 3=0.2, c=0.02, A=0.0093, andwy=1.0.
further in the attractor restoration. Such an approach solves The dependence of the two largest LE for a hyperchaotic
the problem of inhomogeneity, but in our experiments withregime versug:. as calculated from Eq$7) is shown in Fig.
large ® we were unable to estimate, in both casegfor  6(a). Figure Gb) represents the results of extracting dynam-
win(t) as well as forwji(t)], see Fig. 5. Therefore, we ics from TC ISI series recorded as time intervals between
conclude that the second LE, unlike the largest exponent, isuccessive crossings of the plaxg=0 (black pointg, i.e.,
relatively sensitive to the choice of the firing threshold, andwhen the Poincaresecant is introduced for the first sub-
our abilities to extract\, are restricted to the case when system. We can see, that only the dependdraiethe largest
threshold-crossing occurs during each rotation of the phase-E in Fig. 6(@ can be estimated from the analysis of return
space trajectory. times. This situation is also observed when consideyi{t)

In the following we shall discuss only the case of smallas the forcing signal acting on the TC mofl€ig. 6(b), white
0. Since the quality of extracting dynamics is quite good forpoints]. By analogy, we can set the equation of the Poincare
such threshold level&ig. 4), it becomes relevant to ask: Is secant for the other subsystem. Figute)&how the corre-
it possible to diagnose a hyperchaotic regime when processponding results for the series of times between successive
ing spike trains? To answer this question consider twaeturns to the plane,=0 (black point3 andy,=0 (white

coupled Rasler systems as described| i#|: points by the phase-space trajectory. When processing the
0.06
(a)
L
A
1.2 FIG. 6. Computing two LEs from ISI series
for a hyperchaotic regimga) The results of an
estimation\, , using the approachl5] consid-
—0.01 ered as “true” values(b) ComputingX ; , from
6.8 return times recorded as time intervals between
successive intersections of the plane= 0 (black
0.06 point9 or y;=0 (white pointg; (c) The same as
in (b) but for the planex,=0 (or y,=0); (d)
Computing\, , from two TC ISI sequences si-
A 2 multaneously(taking x;=0 andx,=0). Dotted
1,2 12 curves mark “true” values.
-0.01 -0.01
6. 6.8 u 7.2
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coordinates of the second subsystem, the depend2rice sions. Therefore, the largest LE estimated from IS series is
Fig. 6(a) is reproduced. Thus, we have estimated each posmaintained under linear transformations of the chaotic input
tive LE separately: the first positive exponent is obtained ifsignal. Moreover, the precision of extracting dynamics does
the coordinate of the first subsystem is considered as theot depend on the structure of ISIs under the formulated
external drive for the TC model, and the second positive LEconditions. Note, that we speak about the numerical estima-
when using the coordinate of the second subsystem of Eqtion of attractor characteristics. In practice, when processing
(7). These results show that considering a single spike traia finite amount of data, the problem of the quality of recon-
as the output of the TC model with hyperchaotic forcing isstruction is importan{5,6] although well-known theoretical
not enough to quantify the input hyperchaotic regime fully. results[4] have no limitations on the mean value of ISIs.
These results apply if time intervals between intersections The second LE is more sensitive to the structure of the
of a single planex;=0 (or y;=0) are used in the attractor output process and can be extracted from return times only if
restoration. When the opportunity exists to measure returall loops of the phase-space trajectory cross the secant plane.
times for each of the coupled dynamical systdwfscourse, The knowledge of TC ISIs measured when the one-
this may be impossible in real experimenthen the prop- dimensional projection of the hyperchaotic signal in the
erties of the complex processes can be quantified more preoupled system acts as input to the TC model is not enough
cisely [Fig. 6(d)]. to diagnose a hyperchaotic behavior, and measuring return
times from each subsystem is necessary for this purpose.
IV. SUMMARY We have shown that computing two LEs can lead to in-
] ) . correct conclusions: the chaotic regime with several temporal
The main results of this study are the following. The larg-scales can be diagnosed as hyperchabiig. 5). At the same

acting as forcing signal on IF or TC models can be extractegyot quantified Figs. &b,0)].

from an output sequence of interspike intervals if the mean

ISI does not exceed some temp_oral schle These scalejs' ACKNOWLEDGMENTS
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