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Chaotic dynamics from interspike intervals
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Considering two different mathematical models describing chaotic spiking phenomena, namely, an
integrate-and-fireand athreshold-crossingmodel, we discuss the problem of extracting dynamics from inter-
spike intervals~ISIs! and show that the possibilities of computing the largest Lyapunov exponent~LE! from
point processes differ between the two models. We also consider the problem of estimating the second LE and
the possibility to diagnose hyperchaotic behavior by processing spike trains. Since the second exponent is quite
sensitive to the structure of the ISI series, we investigate the problem of its computation.
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I. INTRODUCTION

An important problem in modern science is the study
information processing by biological systems. Optic
chemical, and acoustic signals, in fact all types of inform
tion which is received by the sensory system, are encode
nerve cells into sequences of pulses of similar shape~spikes!
before they are transmitted to the brain. Although the m
lecular mechanisms of this encoding are partly understoo
significant number of questions remain relating to the fu
tion of the pulses as a code@1#.

A nerve cell can be considered as an example of a thr
old device that transforms an input signalS(t) into an output
sequence of spikes. The shape of the output pulses doe
depend on the external signal, and the information about
structure ofS(t) is reflected in the time intervals betwee
successive firings~interspike intervals of the action potenti
train or ISIs!. Such processes are often referred to as p
processes. They have been the topic of a large numbe
studies in the physical literature@2#. Recently, point pro-
cesses have become of interest from the viewpoint of rec
struction of dynamical systems@3–7#. When applying the
reconstruction to a threshold device subject to an exte
force S(t) the question arises: Can the state of the forc
system be identified from the output ISI sequence? An
swer was first provided by Sauer@3,4#, who proved that Tak-
ens embedding theorem@8# can be extended to the case
point processes. As a consequence, the ISI may be co
ered as a new state variable that allows us to study the
dimensional dynamics at the input of a neuron. The poss
ity to characterize numerically the properties of the exter
signal when only processing spike train has been tested
number of works@5–7#.

Rather popular and at the same time biologically mo
vated approaches to the analysis of spiking phenomena
threshold-crossing~TC! and integrate-and-fire~IF! models.
Both approaches consider often a chaotic input signalS(t),
e.g., a variable of some dynamical system in the case of
models or its linear transformation for IF models@5#.

Within the framework of the first approach, the timesTi
are determined as the moments when the signalS(t) crosses
the levelS5Q in a particular direction. From the viewpoin
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of dynamical system theory, this condition sets the equa
of a secant plane in phase space. Therefore, the inters
intervalsI i5Ti 112Ti ~TC ISIs! can be interpreted as retur
times to a Poincare´ secant.

Within the framework of IF models a sequence of inte
spike intervalsI i ~IF ISIs! can be obtained from the equatio

E
Ti

Ti 11
S~ t !dt5u, I i5Ti 112Ti . ~1!

Here, u is a threshold level andTi are the times when the
firing threshold is reached and spikes occur. After su
events the value of the integral is reset to zero.

In our previous works@9,10#, the possibility of extracting
dynamics from return times was tested numerically. It w
shown that the largest Lyapunov exponent~LE! l1 that char-
acterizes the chaotic dynamics of the signal can be extra
from TC ISIs if the mean value of the return time does n
exceed some temporal scale. In the present study we s
that the possibilities of extracting dynamics from interspi
intervals differ between the above-mentioned models.
also discuss the problem of computing the second Lyapu
exponent from ISIs and, hence, the possibility of diagnos
hyperchaotic signals by processing spike trains.

II. COMPUTING THE LARGEST LE FROM ISI SERIES

Let us first discuss the TC model. A useful approach
reconstruct the metrical and dynamical properties of a lo
dimensional signalS(t) from return times has been propose
by Jansonet al. @9#. It is based on the notion of an instant
neous frequency for chaotic oscillations. Briefly speakin
we have suggested to analyze the temporal dependenc
the average instantaneous frequency that maintains the c
acteristics of the chaotic attractor and can be obtained
some approximation from TC ISIs@9#.
©2001 The American Physical Society05-1
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FIG. 1. Probability distributionsP(I ) of TC
ISIs and return time maps appropriate toQ50
~a,b! and Q511 ~c,d!, respectively. AsQ is
shifted away from zero certain loops cease to
tersect the Poincare´ secant, and contributions to
P(I ) with longer time intervals arise.
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Let us consider the Ro¨ssler system

dx

dt
52~y1z!,

dy

dt
5x10.15y,

dz

dt
50.21z~x210!. ~2!

Here,S(t)5x(t), and the secant plane is specified asx50.
A projection of the chaotic attractor on the plane (x,y) re-
sembles a smeared limit cycle@11#. Using the Poincare´ sec-
tion, to each rotation~i.e., to each TC ISI! we can attribute a
phase increase of 2p @11#:

w~ t !52p
t2Ti

I i
12p i , Ti<t,Ti 11 . ~3!

We may hereafter introduce the pointsv(Ti)52p/I i that
represent the values of the average instantaneous frequ
during a return timeI i .

From the viewpoint of reconstruction it is preferable
analyze data with constant time intervalDt. For this purpose
the pointsv(Ti) can be interpolated by a smooth functio
~e.g., by a cubic spline! v int(t). Jansonet al. @9# showed that
v int(t) in many cases allows us to estimate the propertie
chaotic oscillationsx(t) with good accuracy.

If the value of the threshold levelQ differs from zero, the
situation becomes more complicated. An increase ofQ
changes the structures of the TC ISI series and return
map, because certain loops cease to intersect the secant
~Fig. 1!. Shifting of the firing threshold has a familiar inte
pretation: Suppose that we change the amplitude or the m
value of the input signalS(t) at constantQ.0. In the frame-
work of dynamical systems theory the properties of the fo
ing system~e.g., the dimension and LE! are invariant to lin-
ear transformations of the coordinates. The question is
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follows: Under what conditions is it possible to extract n
merically the characteristics of the chaotic oscillationsS(t)
at the input of the threshold device from the output sig
~i.e., from the TC ISI-sequence!? In a previous study@10# we
have shown that the largest LE can be computed from re
times if the mean valueĪ of the TC ISI is less than som
temporal scaleTc ~Fig. 2! that can be taken approximately t
be equal to the prediction time~or Lyapunov time! for the
chaotic oscillations@12#.

Moreover, even if some loops of the phase-space tra
tory do not cross the planeS5Q, the value of the largest LE
can be obtained almost with the same accuracy as in the

FIG. 2. ~a! Dependence of the largest LE (l1) estimated from
TC ISIs using the method@13#; ~b! corresponding values of the

mean ISIĪ vs the firing thresholdQ. The first coordinate of Eqs.~2!
has been used as the input signalS(t)5x(t). The largest LE re-

mains nearly independent ofQ as long asĪ falls below a certain
threshold.
5-2
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of small thresholds~where crossing of the secant plane o
curs during each rotation!. Although the metrical propertie
are rather sensitive to the choice ofQ and often cannot be
estimated@5#, we can still extract dynamics from the inte
spike intervals.

Now consider the IF model. Following Racicot and Lon
tin @6#, at high firing rates an ISI represents a nonlinear tra
formation of the external signal

I i'u/S~Ti !. ~4!

Therefore, we can write

1

I i
'

1

u
S~Ti !5kS~Ti !. ~5!

Equation~5! implies that at fixed momentsTi we know the
linear transformation of the input signal. The points 1/I i(Ti)
are again interpolated by a smooth functionSint(t) that can
then be used in the reconstruction. SinceSint(t)'kS(t) we
expect that the interpolated temporal dependence main
both the metrical and the dynamical properties of the attr
tor corresponding to the chaotic forcing. We have carried
such a calculation taking input signalS(t)5x(t)1C, where
x(t) is the first coordinate of the Ro¨ssler system~2! andC is
a constant shift (C540,u535) @6#. The longeru is, the less
is the accuracy of Eq.~4!. Aiming to investigate how the
quality of the reconstruction of the attractor’s characteris
depends on the mean valueĪ of the IF ISIs, we can chang
the constantC at fixedu instead of shifting the firing thresh
old as for TC model. An increase ofC leads an increase o
the firing rate and a decrease ofĪ ~Fig. 3!. It is clearly seen
that the value ofl1 does not change significantly as long

FIG. 3. Dependence of the largest LE estimated from IF I
using the method@13# ~a! and corresponding values of the mean I
vs the shiftC of the chaotic signal~b!. The value of threshold leve
u535.
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C>30. This corresponds toĪ ,T0/4, whereT0 is the basic
period of the chaotic oscillationsx(t). For smallC the length
of time window spanned by a reconstructed state vector,
comes quite large that leads to the effect of attractor deg
ing @5#.

We conclude that the largest LE of the driving signal c
be extracted from the output sequence of interspike inter
for TC as well as for IF models if the mean value of the I
does not exceed some temporal scaleTc . This scale takes
different values for each type of mathematical model used
describe the spiking phenomena:Tc is less thanT0 /4 for IF
models~for signals with clearly expressed basic period! and
does not exceed the Lyapunov time for TC models. T
larger value of the characteristic scale for return times in
latter case is presumably connected with slower temp
variations for the average instantaneous frequencyv int(t) in
comparison with the oscillations ofSint(t).

III. COMPUTING TWO LE FROM RETURN TIMES

Let us now consider a more complicated proble
namely, the extraction of the second LE (l2) from point
processes. Choose again the first coordinate of the Ro¨ssler
system~2! as the input signalS(t) for the TC-model. Figure
4 shows the results for two LE computed withQ50 when
the TC ISI sequence has only one characteristic temp
scale. The quality of extracting dynamics can be conside
as fairly good (l2 is close to zero!.

This situation is changed dramatically if there exist se
eral scales in the return times@Figs. 1~c,d!#. In this case, the
second LE takes nonzero values, and the corresponding
gime of the external driveS(t) can be wrongly diagnosed a
hyperchaotic. The reason is that unlike the case of sm
thresholds, an attractor restored from TC ISIs for largeQ is
highly inhomogeneous@10#.

A possible way of solving the problem of inhomogene
for chaotic processes with a clearly expressed basic
quency consists in the generalization of the procedure
instantaneous phase definition. To each crossing of the
cant plane, we can attribute a 2pki phase increase:

s

FIG. 4. Results of computing two LEs from TC ISI series o
tained withQ50 vs one of the parameters from the algorithm@13#.
D0 is the initial separation between phase trajectories in the rest
attractor. First, a renormalization of the reconstructed phase por
to the range@0,1# has been performed.
5-3
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w* ~ t !52pki

t2Ti

I i
12p(

j 51

i

kj , Ti<t,Ti 11 , ~6!

whereki are no longer constant, but can be obtained from
condition of slow changes of the average instantaneous
quencyv* (Ti)52pki /I i for successive TC ISIs. The point
v* (Ti) are interpolated by a smooth functionv int* (t) used
further in the attractor restoration. Such an approach so
the problem of inhomogeneity, but in our experiments w
large Q we were unable to estimatel2 in both cases@for
v int(t) as well as forv int* (t)#, see Fig. 5. Therefore, w
conclude that the second LE, unlike the largest exponen
relatively sensitive to the choice of the firing threshold, a
our abilities to extractl2 are restricted to the case whe
threshold-crossing occurs during each rotation of the ph
space trajectory.

In the following we shall discuss only the case of sm
Q. Since the quality of extracting dynamics is quite good
such threshold levels~Fig. 4!, it becomes relevant to ask: I
it possible to diagnose a hyperchaotic regime when proc
ing spike trains? To answer this question consider t
coupled Ro¨ssler systems as described in@14#:

FIG. 5. Results of computing the second LE from TC ISI ser
appropriate toQ511 vs the initial distance between phase traje
tories. Solid and dashed lines correspond to different procedure
the introduction of the instantaneous phase: via Eq.~3! and via Eq.
~6!, respectively. In both cases, the error in the estimation ofl2 is
quite large.
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dx1

dt
52v1y12z11c~x22x1!,

dy1

dt
5v1x11ay1 ,

dz1

dt
5b1z1~x12m!, ~7!

dx2

dt
52v2y22z21c~x12x2!,

dy2

dt
5v2x21ay2 ,

dz2

dt
5b1z2~x22m!,

where the parametersa, b, andm govern the dynamics o
each subsystem.c is the coupling parameter,v15v01D,
andv25v02D are the basic frequencies andD is the mis-
match between them. The parameters are chosen as fol
@14#: a50.15, b50.2, c50.02, D50.0093, andv051.0.

The dependence of the two largest LE for a hypercha
regime versusm as calculated from Eqs.~7! is shown in Fig.
6~a!. Figure 6~b! represents the results of extracting dyna
ics from TC ISI series recorded as time intervals betwe
successive crossings of the planex150 ~black points!, i.e.,
when the Poincare´ secant is introduced for the first sub
system. We can see, that only the dependence1 of the largest
LE in Fig. 6~a! can be estimated from the analysis of retu
times. This situation is also observed when consideringy1(t)
as the forcing signal acting on the TC model@Fig. 6~b!, white
points#. By analogy, we can set the equation of the Poinc´
secant for the other subsystem. Figure 6~c! show the corre-
sponding results for the series of times between succes
returns to the planex250 ~black points! and y250 ~white
points! by the phase-space trajectory. When processing

s
-
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s
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-

FIG. 6. Computing two LEs from ISI serie
for a hyperchaotic regime:~a! The results of an
estimationl1,2 using the approach@15# consid-
ered as ‘‘true’’ values;~b! Computingl1,2 from
return times recorded as time intervals betwe
successive intersections of the planex150 ~black
points! or y150 ~white points!; ~c! The same as
in ~b! but for the planesx250 ~or y250); ~d!
Computingl1,2 from two TC ISI sequences si
multaneously~taking x150 and x250). Dotted
curves mark ‘‘true’’ values.
5-4



os

t
L
Eq
ra
is

y.
on
r
tu

p

g
ion
te
a

in
f
on
nd
he
u
cl

s is
put
es

ted
ma-
ing
n-
l

the
ly if
lane.
e-

he
ugh
turn
.

in-
oral

be

cad-
ade
n
ent
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coordinates of the second subsystem, the dependence2 in
Fig. 6~a! is reproduced. Thus, we have estimated each p
tive LE separately: the first positive exponent is obtained
the coordinate of the first subsystem is considered as
external drive for the TC model, and the second positive
when using the coordinate of the second subsystem of
~7!. These results show that considering a single spike t
as the output of the TC model with hyperchaotic forcing
not enough to quantify the input hyperchaotic regime full

These results apply if time intervals between intersecti
of a single planexj50 ~or yj50) are used in the attracto
restoration. When the opportunity exists to measure re
times for each of the coupled dynamical systems~of course,
this may be impossible in real experiments!, then the prop-
erties of the complex processes can be quantified more
cisely @Fig. 6~d!#.

IV. SUMMARY

The main results of this study are the following. The lar
est LE of a chaotic regime with one-dimensional project
acting as forcing signal on IF or TC models can be extrac
from an output sequence of interspike intervals if the me
ISI does not exceed some temporal scaleTc . These scales
differ for each of the mathematical approaches describ
spiking phenomena: for IF modelsTc is less than the time o
corresponding the first zero value of the correlation functi
For TC model the typical scale is significantly larger a
approximately equals the prediction time. In this work, t
results for Ro¨ssler systems have been presented. Subseq
experiments using other systems justify the obtained con
an
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sions. Therefore, the largest LE estimated from ISI serie
maintained under linear transformations of the chaotic in
signal. Moreover, the precision of extracting dynamics do
not depend on the structure of ISIs under the formula
conditions. Note, that we speak about the numerical esti
tion of attractor characteristics. In practice, when process
a finite amount of data, the problem of the quality of reco
struction is important@5,6# although well-known theoretica
results@4# have no limitations on the mean value of ISIs.

The second LE is more sensitive to the structure of
output process and can be extracted from return times on
all loops of the phase-space trajectory cross the secant p

The knowledge of TC ISIs measured when the on
dimensional projection of the hyperchaotic signal in t
coupled system acts as input to the TC model is not eno
to diagnose a hyperchaotic behavior, and measuring re
times from each subsystem is necessary for this purpose

We have shown that computing two LEs can lead to
correct conclusions: the chaotic regime with several temp
scales can be diagnosed as hyperchaotic~Fig. 5!. At the same
time, complex dynamics with two positive exponents may
not quantified@Figs. 6~b,c!#.
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